Magnetic resonance imaging of blunt traumatic rupture of the right hemidiaphragm

T. Dosios*, I. C. Papachristos, H. Chrysicopoulos

1 Division of Thoracic Surgery, Diagnostic and Therapeutic Center, HYGEIA, Athens, Greece
2 Department of Diagnostic Radiology, Diagnostic and Therapeutic Center, HYGEIA, Athens, Greece

Abstract. A patient suffering from blunt traumatic rupture of the right hemidiaphragm is presented. Chest radiography and computed tomography (CT) suggested the type of injury, but magnetic resonance imaging (MRI) established unequivocally the correct preoperative diagnosis. [Eur J Cardio-thorac Surg (1993) 7:553–554]

Key words: Diaphragm – Rupture – Trauma – Magnetic resonance imaging

Blunt traumatic rupture of the right hemidiaphragm is a relatively rare injury whose diagnosis is frequently overlooked. A patient suffering from this injury is presented. The correct diagnosis was established with the aid of magnetic resonance imaging (MRI).

Case report

A 28-year-old white man had a high speed automobile accident on August 9, 1992 and was admitted to a local hospital, where a right hemothorax due to blunt thoracoabdominal trauma and a fracture of the left humerus were diagnosed. Peritoneal lavage was performed, yielding 2,000 red cells/ml and 70 white cells/ml. These findings were considered nondiagnostic of intraperitoneal bleeding. A closed drainage of the right hemithorax was established and the left arm put in plaster, and the patient was transferred to our hospital 3 days after the injury.

Upon arrival the patient complained of dyspnea and pain at the base of the right hemithorax. His blood pressure was 105/75 mm Hg, pulse rate 116/min and regular, respiration 28/min and temperature 36.9°C. The breathing sounds were absent at the base of the right hemithorax. The abdomen was soft and tender, mainly in the right upper quadrant.

On investigation the following values were established: hematoцит 37.3%, SGOT 72 U/l, SGPT 219 U/l, alc. phosphatase 116 (normal limits 38–117) U/l, bilirubin total 0.43 mg/dl (direct 0.14 mg/dl, indirect 0.29 mg/dl). While the patient was breathing room air, his pO2 was 60 mmHg and pCO2 48 mmHg. The remaining routine laboratory investigations were unremarkable.

Discussion

Traumatic rupture of the right hemidiaphragm constitutes 20%–35% of all the diaphragmatic injuries [1, 3, 9, 12]. Early diagnosis of this injury is overlooked more frequently than that of the left hemidiaphragm [4, 8].

Plain chest radiography remains the screening examination for evaluating blunt trauma of the chest [5]. It is sensitive in detecting left hemidiaphragmatic injuries, however the findings for right hemidiaphragmatic tears are often nonspecific [4, 5]. Suspicious findings include elevation of the diaphragm could not be assessed (Fig. 2). Respiratory gating was employed in all sequences. The coronal and sagittal T1 weighted images demonstrated a large central rupture of the right hemidiaphragm. Through this rupture there was herniation of the liver into the pleural cavity, resulting in significant deviation of the heart to the left (Fig. 3). The supplementary axial PD/T2 weighted images did not provide additional information compared to the CT study.

The patient was operated on through a right thoracotomy. A 10 cm tear of the dome of the right hemidiaphragm was found. The entire right lobe of the liver including the gall bladder was herniated through the diaphragmatic tear into the right pleural cavity displacing the heart to the left. The liver was repositioned into the peritoneal cavity and the diaphragmatic tear was closed. The postoperative course was uneventful.

Received for publication: February 15, 1993
Accepted for publication: May 11, 1993

* Permanent address: 2 Chatzigianni Mexi Str. 115 28 Athens, Greece
Correspondence to: Theodosios Dosios, M.D.
Further evaluation of possible diaphragmatic rupture may be performed with sonography and CT. True positive and false negative results have been reported with both of these imaging modalities [2, 5, 7, 11]. Sonography is a highly operator-dependent examination and can be limited by subcutaneous emphysema, bowel gas, pain, or wound bandages [5]. Computed tomography usually relies on indirect findings such as the identification of omental fat or abdominal viscera outside the diaphragmatic confines [6]. Direct visualization of diaphragmatic discontinuity is very difficult because the diaphragm is oriented in the axial plane, which is the plane of the CT sections.

The multiplanar capability of MRI permits direct imaging of the diaphragm, which is best evaluated in the coronal and sagittal planes. Due to this capability, MRI has been used successfully to detect left-sided diaphragmatic tears at least twice [5, 10]. However, diagnosis of blunt rupture of the right hemidiaphragm based on MRI findings has not been previously reported. In our patient the chest X-ray and CT findings only suggested the presence of a right hemidiaphragmatic tear without providing evidence for definitive diagnosis. On the other hand MRI clearly demonstrated the rupture of the right hemidiaphragm allowing us to establish the correct diagnosis preoperatively.

It is concluded that MRI may provide information which is unavailable from any other imaging technique, and establish the diagnosis of rupture of the right hemidiaphragm.

References